Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels
نویسندگان
چکیده
A series of dynamic small-amplitude oscillatory shear experiments for in situ polymerization process of polyacrylamide–cellulose nanocrystal (PAM–CNC) nanocomposite hydrogels were performed to investigate the relationship between rheological properties and synthesis parameters including chemical cross-linker concentration, polymerization temperature, initiator concentration, and CNC aspect ratios. The results showed that CNCs accelerated the onset of gelation (tonset) and acted as a multifunctional cross-linker during the gelation reaction. The composite hydrogels exhibited enhanced steady-state elastic modulus G 0 1 and plateau loss factor (tanδ) compared to these of the pure PAM hydrogels, indicating that adding CNCs not only reinforced but also toughened PAM hydrogels. G 0 1 and the effective network junction density (N) increased with increased cross-linker concentration, polymerization temperature, and CNC aspect ratios, but decreased with increased initiator concentration. The changes of plateau tanδ were opposite to that of G 0 1. The sol–gel transition kinetics of PAM–CNC hydrogels accelerated with increased cross-linker concentration and polymerization temperature and, however, reached optimization at 0.25 wt% of initiator concentration. CNCs with lower aspect ratios promoted tonset and the sol–gel transition of PAM–CNC hydrogels, suggesting the fact that CNCs with lower aspect ratios further facilitated the formation of network of PAM–CNC nanocomposite hydrogels.
منابع مشابه
Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
Rod-shaped cellulose nanocrystals (CNCs) were manufactured and used to reinforce polyacrylamide (PAM) hydrogels through in situ free-radical polymerization. The gelation process of the nanocomposite hydrogels was monitored on a rheometer using oscillatory shear. The chemical structure, morphology, swelling property, and compression strength of the formed gels were investigated. A possible mecha...
متن کاملViscoelastic Properties of Polyacrylamide Nanocomposite Hydrogels Prepared in Electrolyte Media: Effect of Gelant Volume
In this work, nanocomposite (NC) hydrogels based on polyacrylamide/chromium triacetate were prepared at different reaction mixture (gelant) volumes and their crosslinking process and viscoelastic behaviors were studied. The X-ray diffraction (XRD) patterns taken from the NC hydrogels containing laponite nanoparticles did not show any distinct characteristic basal reflection for all of the NC hy...
متن کاملPhoto-polymerization, swelling and mechanical properties of cellulose fibre reinforced poly(ethylene glycol) hydrogels
The application of hydrogels as load-bearing biomedical components is often limited by their mechanical properties. Often an attempt to improve a hydrogel's stiffness is accompanied by a loss of toughness and swelling properties. In this work, we show that the addition of nanofibrillated cellulose (NFC) provides a mean to tailor both the swelling and the mechanical properties of the hydrogel. V...
متن کاملPhysicochemical Characteristics and Biomedical Applications of Hydrogels: A Review
Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...
متن کاملComposite hydrogels of polyacrylamide and crosslinked pH-responsive micrometer-sized hollow particles.
Whilst hydrogels and hollow particles both continue to attract much attention in the literature there are few examples of hydrogel composites containing hollow particles. Here, we study composite polyacrylamide (PAAm) hydrogels containing micrometer-sized pH-responsive shell-crosslinked hollow particles (abbreviated as HPXL) based on poly(methylmethacrylate-co-methacrylic acid) functionalised w...
متن کامل